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Abstract 

In this study, a method based on virtual fields is suggested for determining plastic constitutive parameters from recorded 

displacement fields. Measuring using global digital image correlation yields the displacement fields of the specimen surface. 

Afterwards, piecewise virtual fields are used to perform material property identification. With the total strain theory serving as the 

constitutive equation, material characteristics may be identified using instantaneous displacement fields. The notion of virtual work 

is used to derive the relations between material properties, measured displacement fields, measured tractions, and virtual 

displacements. These connections are then solved numerically to yield the material properties. By using it on displacement fields 

computed using an elasto-plastic finite element approach and on displacement fields of a pure aluminium specimen collected 

experimentally, the efficacy of the suggested method is shown. A single set of displacement fields under proportionate loading may 

identify the elasto-plastic material characteristics, according to the numerical validation findings. Experimental validation findings 

reveal that elasto-plastic material characteristics may be assessed; nevertheless, a disparity is seen between the directly measured 

stress-strain curve and the one that is inversely detected. 
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1. Introduction 

 
Stress and strain analysis is indispensable for assessing structural integrity and for strength evaluation of machines 

and structures. For such analyses, it is important to know the material properties of the members composing the 

machines and structures. For example, knowledge of material properties is necessary for finite element stress 

analysis. In the case of a material exhibiting plastic deformation, the plastic stress-strain properties such as yield 

stress and hardening parameter and elastic properties should be known. Similarly, knowledge of material properties is 

necessary for computing stresses from measured strains. Generally, material properties are determined from the stress 

and strain values obtained through a uniaxial tensile test. However, the actual properties of the materials composing 

machines and structures are sometimes different from those obtained from the uniaxial tensile test because of various 

factors such as the heat effect during processing, change in material structures, and work hardening (Miura, 2006). 

Therefore, the actual properties of such materials are required for performing accurate stress-strain and strength 

evaluation. Consequently, it is necessary to identify material properties inversely by applying a force on actual 

machines and structures and measuring their strain output. One inverse method to determine the properties of 

materials is an indentation technique (Giannakopoulos and Suresh, 1999). 

 

Recently, optical methods such as digital image correlation (Sutton et al., 2009; Yoneyama, 2016) has been widely 

used to evaluate displacements and strains. These methods yield plenty of data on full-field displacement or strain 

distribution, and hence, they are effective for identifying material properties through inverse analysis.   Consequently, 
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various methods (Avril et al., 2008a) have been studied for identifying material properties from data measured by 

optical methods. For example, a method in which an Airy stress function is employed (Hori and Kameda, 2001) and 

one employing finite element updating (Réthoré, 2010) have been developed. Among these methods (Avril et al., 

2008a; Hori and Kameda, 2001; Réthoré, 2010) , the virtual fields method (Grédiac et al., 2009; Grédiac et al., 1994; 

Grédiac et al., 1999; Pierron and Grédiac, 2000; Moulart et al., 2006; Pierron et al., 2011; Moulart et al., 2011; Grédiac 

and Pierron 2006; Pannier et al., 2006; Avril et al., 2008a; Sutton et al., 2008) based on the principle of virtual work is 

one of most widely accepted techniques. This method has been applied to identify the properties of anisotropic 

materials (Grédiac et al., 2009; Grédiac and Pierron, 2012; Grédiac et al., 1994; Grédiac et al., 1999; Pierron and 

Grédiac, 2000; Moulart et al., 2006) and materials under dynamic loading conditions (Pierron et al., 2011; Moulart et 

al., 2011). Elasto-plastic material properties have already been identified by the virtual fields method (Grédiac and 

Pierron 2006; Pannier et al., 2006; Avril et al., 2008b; Avril et al., 2008c; Sutton et al., 2008; Coppieters et al., 2011; 

Coppieters et al., 2014; Kim et al., 2014). In these studies (Grédiac and Pierron 2006; Pannier et al., 2006; Avril et al., 

2008b; Avril et al., 2008c; Sutton et al., 2008), elasto-plastic material properties were identified from measured 

displacement data under various loads based on the constitutive relation with the strain incremental theory. Therefore, 

these methods need a lot of displacement data under various load steps. However, it is convenient to perform 

identification from a set of displacement distributions under an arbitrary load. In previous study, the authors (Jinno et 

al., 2014) investigated a method for identifying elasto-plastic material properties from measured data obtained under an 

arbitrary load using the total strain theory (Hill, 1950) instead of the strain incremental theory. Among measurement 

methods, digital image correlation has been widely used to obtain displacements as input data for inverse analyses. 

However, note that the accuracy of measurement results near boundaries is not high in conventional subset-based 

digital image correlation because subsets overlap the region beyond the boundaries. Therefore, a new method should 

be used because the region for obtaining data for inverse analysis usually contains boundaries. 

This study aims to develop a method for identifying elasto-plastic material properties from a set of displacement 

fields under a single load, based on the virtual fields method studied in previous study (Jinno et al., 2014).  The use of 

global mesh-based digital image correlation (Yoneyama et al., 2016) is proposed to obtain the displacement fields of 

the specimen surface because this method yields appropriate results near boundaries and interfaces unlike the 

conventional subset-based digital image correlation. The Ramberg-Osgood equation (Ramberg and Osgood 1941) is 

assumed as the stress-strain relation. Then, the relations between displacements, tractions, and virtual displacements 

are derived by using the total strain theory as the constitutive equation. The effectiveness of the proposed method is 

demonstrated by identifying the material properties of a pure aluminum specimen under tension.  Results show that 

the proposed method can be used to obtain not only the elastic properties, but also elasto-plastic properties from 

measured displacement fields. 

 

2. Identification method 

2.1 Basic principle of the virtual fields method 

 
Consider that the in-plane displacement distributions of a planar specimen surface are obtained through 

measurements. Plane stress condition is assumed because the displacements on the surface of the specimen are used  

for the identification. Based on the principle of virtual work, the following equation can be obtained because the 

internal virtual work equals the external virtual work in the absence of a body force. 
 

 * d = 
q 

Tu* d (i, j = 1, 2) 
(1) 

 

where ij represents the stress components; ij
*, the virtual strain components; Ti, the external load components; ui

*, the 

virtual displacements; , the analysis region; and q, the boundary that is subjected to the traction. The subscripts i,j 

= 1, 2 indicate the x and y directions in the Cartesian coordinate system. The stress-strain relationship for a 

two-dimensional linearly elastic material can be represented as follows: 



 
 ISSN NO: 9726-001X 

Volume 9 Issue 03 2021  

         

  61  

11 11 +22 + 66 d+  c12 12 +21 − 66 d = T1u1 + T2u2 

1  1 

 6  

 

 

    
  

 c
11 

c
12 

0 
    
  

 2   =  c
12 

c
22 

0  2  (2) 


 

 
  

 0 0 c66 

  

 6  

where Voigt convention is used; that is, 1 and 2 are the normal stress components; 1 and 2, the normal strain 

components; and 6 and 6, the shear stress and the shear strain, respectively.  In Equation (2), c11, c12, c22, and c66 are 

the elastic constants, and they relate the elastic modulus and the Poisson's ratio. For an isotropic elastic material, the 

following equation can be obtained from Eqs. (1) and (2). 

 

c  
 * 

* 1 * 
  

 * 
*  1 * 

  ( * * ) 
 2   2  q 

 

Herein, the strains 1, 2, and 6 can be obtained by differentiating the measured displacements.  The variables u1
* and 

u2
* represent the virtual displacements, and 1

*, 2
*, and 6

* are the virtual strains related to virtual displacement. The 

loads T1 and T2 can be obtained through measurements by using a load transducer.  Therefore, the unknowns in Eq. 

(3) are the two elastic constants c11 and c12. Simultaneous equations for these two unknowns can be obtained by 

introducing two virtual displacements, and then the two unknowns can be obtained by solving these simultaneous 

equations.  This is the basic principle of the virtual fields method.  Details of the virtual fields method are available 

in literature (Grédiac et al., 2009; Grédiac et al., 1994; Grédiac et al., 1999; Pierron and Grédiac, 2000; Moulart et al., 

2006; Pierron et al., 2011; Moulart et al., 2011; Grédiac and Pierron 2006; Pannier et al., 2006; Avril et al., 2008a; Avril 

et al., 2008c; Sutton et al., 2008). 

 

2.2 Identification of elasto-plastic properties by employing the total strain theory 

 
For identifying elasto-plastic material properties, a model of the stress-strain relation is assumed, and the stress and 

strain relation of a wide range of strain after yielding is obtained by identifying the model parameters.   In this study, 

the Ramberg-Osgood relation (Ramberg and Osgood 1941) that is widely used for representing stress-strain relation of 

aluminum is used. In this case, the relation between the equivalent stress  and the equivalent strain  can be 

expressed as follows: 

    
n

 

 = +   0   (4) 

E E  0  

 

where E represents the elastic modulus; 0, the yield stress; , the material constant; and n, the hardening index.  In 

the proposed method, a single set of displacement fields obtained under an arbitrary load is used, instead of the multiple 

measured displacement fields under various loads, as the input data for the inverse analysis algorithm.  Thus, the total 

strain theory (Henkey equations) (Hill, 1950) is used as the constitutive equation instead of the strain incremental  

theory. Therefore, the proposed method can be applied to proportional loading problems without unloading.  By 

substituting the Ramberg-Osgood equation into the total strain theory, the relation between the stress components ij 

and the strain components ij can be expressed as shown in the following equation. 
 

1+  1− 2 3   
n−1 

s
 

ij = sij + 
E 3E 


kk 


ij 

+  0   
2  0  

 ij  

0 

(i, j = 1, 2) (5) 

 

where  represents the Poisson's ratio; ij, the Kronecker delta; and sij, the deviatoric stress components.  The relation 

among the measured strains ij, the loads Ti, the virtual displacements ui
*, the virtual strains ij

*, and the material 

property parameters E, , , n, and 0 is obtained by substituting Eq. (5) into Eq. (1). 

The parameters , n, and 0 are not independent but mutually related.  Thus, Eq. (4) is rewritten as follows: 

 = 
 

+n (6) 

E 

d (3) 
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where 

n−1 (7) 
   1  

 =   
E  0  

 

The parameters 0 and  relate the parameters  and n as shown below. 

 

0 = (8) 

 

 = En−1 (9) 

 

when 0 represents the proof stress.  Thus, the number of unknowns can be reduced by substituting 0 and  with . 

Here, consider the case that the elastic modulus E and Poisson's ratio  are known, but the plastic parameters  and 

n are identified. Because the elastic modulus and the Poisson's ratio are known in many cases and because they are 

hardly changed by thermal treatment, it is appropriate to treat them as known values.  The following equations are 

obtained for identifying  and n by introducing two virtual displacements. 

  *(1) d+   *(1) d+   *(1)d =  (T u*(1) + T u*(1) )d 
1 1 2 2 

  

6 6 1 1 2 2 

 q 

(10) 
  *(2) d+   *(2) d+   *(2)d =  (T u*(2) + T u*(2) )d 

1 1 2 2 

  

6 6 1 1 2 2 

 q 

 

Equation (10) represents nonlinear simultaneous equations for parameters  and n. The Newton–Raphson method is 

used to obtain them. Equation (10) is then rewritten as follows: 

 

f =   *(k ) d+   *(k ) d+   *(k )d−  (T u*(k ) + T u*(k ) )d 
(11) 

k 1 1 

 

2 2 6 6 

  

1 1 2 2 

q 

Herein, k represents the distinction number of the virtual displacement fields (k = 1 and 2). A series of iterative 

equations based on Taylor's series expansion of Eq. (11) yields the following equations. 

( f ) = ( f ) +
f

k  

n +

f
k  


 (12) 

k i+1 k i  
    
 n     

where subscript i denotes the ith iteration step, and n and  are corrections to the previous estimates of n and . 

The desired results (fk)i+1 = 0 yield the following simultaneous equations with respect to the corrections.  

f  f  (13) 
− f =  k )n + k ) 

k  n     

 

Equation (13) can be rewritten in matrix form as follows: 

f = b (14) 

where 
 

 
   f

1
 

f 

  
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Fig. 1  Specimen geometries: (a) uniaxial test; (b) identification by virtual fields method 

 

The solution for Eq. (14) is as follows: 

 

 = b−1f (16) 

 

The solution of the matrix equation gives the correction terms for prior estimates of parameters n and .  Accordingly, 

an iterative procedure must be used to obtain the parameters. Then, the estimates of the unknowns are revised. The 

procedure is repeated until the corrections become acceptably small. Finally, the parameters 0 and  are obtained 

from the values of n and .  Equation (15) indicates that the derivatives of fk with respect to the unknowns are required 

in matrix b. However, the values of stresses 1, 2, and 6 in Eq. (11) can be obtained by solving Eq. (5) numerically; 

Eq. (11) cannot be represented as the function of the unknowns. Therefore, the derivatives of fk are obtained by 

numerical differentiation. 

In this study, the virtual fields method is implemented with piecewise virtual fields (Toussaint et al., 2006).   That 

is, a finite element model of the analysis region is produced, the measured displacements, the virtual displacements, 

and the tractions are assigned to the nodes of the model, and then, the domain and boundary integrals are computed 

numerically. 

 

3. Experimental verification of the proposed method 

3.1 Procedure for experiment and inverse analysis 

 
Material property identification is performed to verify the proposed method.  The material used in the experiment 

is annealed pure aluminum A1050. Two types of the specimen are prepared as shown in Fig. 1. The specimen 

shown in Fig. 1(a) is used for a uniaxial tension test to plot the stress-strain diagram that is used as reference data to 

verify the identification results.  In the uniaxial tension test, strains are measured using strain gauges.  Identification 

by the proposed method is applied to the displacement fields of the specimen shown in Fig. 1(b).  For digital image 

correlation, the specimen is painted with black ink on the surface, and a white dot pattern is overlaid by spray painting, 

creating a speckle-like pattern. The size of the random pattern is selected to oversample the intensity pattern using 

several sensors for accurate measurement. In this study, each random pattern is oversampled by 10–40 pixels. The 

variations in the speckle-like pattern on the specimen are observed by a monochromatic CCD camera (2048  2048 

pixels  8 bits) equipped with a telephoto lens with a focal length of 200 mm.  The length of 1 mm corresponds to 

12 140 
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Nodes: 413 
Elements: 120 

Fig. 2  Finite element model for displacement measurement by global digital image correlation and identification by the 

virtual fields method 

 

Fig. 3  Stress-strain diagram for annealed aluminum alloy and the curve approximated by using the Ramberg-Osgood 

equation 

 

about 18 pixels on an image.  Various algorithms have been proposed for digital image correlation. In this study, a 

global digital image correlation algorithm (Yoneyama et al., 2016) employing a finite element mesh to search for 

displacements at all nodes simultaneously is used. Figure 2 shows the finite element model for global digital image 

correlation used in this study. The model consists of 8-noded isoparametric elements. A bicubic interpolation 

method is used for obtaining the continuous speckle pattern. The data processing is implemented using software 

developed by one author. 

The domain and boundary integrals included in the inverse analysis method are processed using the same finite 

element model as the displacement measurement with global digital image correlation. It is sometimes difficult to 

obtain appropriate results by inverse analysis because of the errors in strains attributed to the differentiation of the 

measured displacements. Therefore, the displacement fields are smoothed by minimizing the sum of the residuals of  

the measured and smoothed displacements and the second-order derivatives of the approximated values (Yoneyama, 

2016). Furthermore, the strains obtained by numerical differentiation using a finite element are smoothed similarly. 

Then, the nodal displacements are determined by minimizing the sum of the residuals of the measured and smoothed 

strains and those of the smoothed strains and the strains obtained from the smoothed displacements.  The values of the 

measured and virtual displacements, and strains at integration points inside elements are obtained from the nodal 

values.  Then, the integrations included in the inverse analysis are computed.  In iterative computation, realistic 
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Fig. 4  Displacement distributions obtained by elasto-plastic finite element analysis (P = 4900 N) 

 

Fig. 5  Strain distributions obtained by elasto-plastic finite element analysis (P = 4900 N) 

 

 

values for pure aluminum, i.e.,  = 1.8, n = 12, and 0 = 75 GPa, are used as the initial values, and the convergence is 

judged when the absolute values of the corrections are less than 0.01. 

 

3.2 Results and discussion 

 
Figure 3 shows the true stress and true strain diagram obtained through the uniaxial tension test of the specimen 

shown in Fig. 1(a).  The approximated curve obtained by the Ramberg-Osgood relation (Ramberg and Osgood, 1941) 

is also shown. Although the difference between the measured and approximated curves can be observed around the 

yielding stress, the representation of the stress-strain relation, except around the yielding stress, by the 

Ramberg-Osgood equation is in good agreement with the actual data. As described in the previous section, in the 

proposed method, the parameters in the Ramberg-Osgood relation are identified, and then, the approximated 

stress-strain curve is obtained. 

Before applying the proposed method to experimentally obtained displacement fields, the identification is  

performed from the displacement fields obtained by an elasto-plastic finite element method to validate the proposed 

procedure and software developed in this study. The experiment described in previous subsection is simulated and the 

displacement fields are obtained by finite element analysis using commercial software of MSC Marc 2014.  Figure 4 

shows the displacement distributions obtained using the finite element method under the load of P = 4900 N and the 

corresponding strains are shown in Fig. 5. The virtual displacements are established manually as described later. 

The elastic parameters of E = 70.4 GPa and  = 0.3 are used as the known material properties.  Then, the plastic 
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Fig. 6  Stress-strain diagrams identified from displacement fields obtained by finite element analysis 

 

 

Fig. 7 Load and load-line displacement curve 

 

Fig. 8  Images of the specimen surface: (a) reference; (b) after deformation (P = 3600 N) 

 

 

parameters are identified. The identified parameters are  = 1.76, n = 17.5, and 0 = 79.9. The stress-strain curve 

constructed from the identified parameters is shown in Fig. 6 together with the curve obtained by the tensile test.  As 

shown in this figure, the identified stress-strain curve agrees with the curve by the tensile test. The values of the 

identified parameters coincide with those obtained by a least-squares method shown in Fig. 3.  That is, the 
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Fig. 9 Displacement distributions obtained by global digital image correlation: (a) P = 3600 N; (b) P = 5000 N 

 

 

Fig. 10 Strain distributions obtained by global digital image correlation: (a) P = 3600 N; (b) P = 5000 N 

 

elasto-plastic material properties can be obtained from a single set of the displacement fields using the total strain 

theory in the virtual fields method. 

Figure 7 shows the relation between the load and the loading point displacement of the specimen shown in Fig. 



 
 ISSN NO: 9726-001X 

Volume 9 Issue 03 2021  

       

68 

 

 

 

1(b). The elastic region and the region where the material exhibits yielding and the plastic deformation can be clearly 

identified in Figure 7. The identification results for the elastic displacement fields under a load of P = 3600 N and the 

plastic deformation fields under a load of P = 5000 N are mainly described in the following text. 

Figure 8 shows the photographs of the specimen surfaces before and after a load of P = 3600 N is applied. The 

650  2048 pixel regions of the 2048  2048 pixel images are shown in this figure. The random pattern created by 

spraying black and white paints can be observed. However, the deformation of the specimen cannot be recognized 

from these figures. The mesh-based global digital image correlation is applied to these images to obtain displacement 

distributions. Strain distributions are also obtained by differentiating the displacements with the manner in ordinarily 

finite element analysis. The results of displacement and strain measurements are shown in Figs. 9 and 10, 

respectively. As shown in Fig. 9(a), there is a gradual variation in the displacement before the specimen exhibits  

plastic deformation. Meanwhile, the displacement varies suddenly at the middle part of the specimen after the plastic 

deformation, as shown in Fig. 9(b). The uniform strain distributions reflecting these displacement distributions are 

shown in Fig. 10(a), and the strain concentration at the center of the specimen is observed in Fig. 10(b).  

First, the elastic modulus and the Poisson's ratio are identified from the displacement fields under various loads 

assuming elastic deformation. For identifying elastic properties using the virtual fields method, virtual displacements 

can be automatically established to minimize the effect of the measurement errors (Moulart et al., 2006; Avril et al., 

2004). In this study, the virtual displacements are automatically determined by applying this method, and then the 

elastic modulus and the Poisson's ratio are determined. The identified values for various loads are shown in Fig. 11. 

The identified elastic moduli and the Poisson's ratios under loads of less than 4000 N are approximately E = 68 GPa 

and  = 0.28, respectively.  These values are appropriate as the material properties of pure aluminum.  In addition, 

 

Fig. 11  Identified elastic modulus and Poisson's ratio under various loads 
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Fig. 12  Virtual displacement fields for identifying plastic parameters: (a) u*(1); (b) u*(2) 
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the values show good agreement with those obtained by the uniaxial tension test, as shown in Fig. 3. However, the 

value of the elastic modulus decreases with the increase in the load when the load is higher than P = 4000 N. This is 

attributed to the fact that the apparent elastic modulus decreases because strains exhibit a high value after yielding, but 

the identification is performed assuming elastic deformation. Therefore, the material yields under a load of 4000 N, 

that is, the nominal stress of 67 MPa. The stress-strain diagram shown in Fig. 3 indicates that the material yielding 

under a load of approximately 4000 N is appropriate. 

Next, the plastic properties are identified by the proposed method.  The appropriate virtual displacements cannot 

be established automatically in this case, because the equations connecting the unknown material properties with other 

parameters are nonlinear, unlike in the case of the elastic material. Thus, the virtual displacements have to be 

established manually, as shown in Fig. 12.  The identified elastic parameters of E = 68 GPa and  = 0.28 are used as 

the known material properties.  Table 1 lists the identified parameters , 0, and n under the loads of 5000 and 5200 

Table 1  Identified plastic parameters 
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Fig. 13  Identified stress-strain diagrams with known elastic modulus and Poisson's ratio 

 

Table 2  Identified plastic parameters and elastic modulus 

E, GPa n  0, MPa 

Identified 

(P = 5000 N) 

Identified 

(P = 5200 N) 

58.5 5.89 20.2 58.02 

 

53.3 4.93 19.2 55.45 
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Fig. 14  Identified stress-strain diagrams with known Poisson's ratio 
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N, and Fig. 13 shows the stress-strain diagrams. Table 1 and Fig. 3 indicate that the identified plastic parameters 

differ from those obtained by the tensile test, whereas the identified stress-strain curves in Fig. 13 show fairly good 

agreement with the tensile test results. In order to evaluate the difference between the identified results and the tensile 

test, the area under the curve is computed, and the ratios are evaluated as the error. In addition, the coefficient of the 

determination (R2 value) is evaluated to determine the correlation between the curves. The error is found to be 4.0%, 

and the coefficient of the determination is 0.984 for a load P = 5000 N; similarly, the error is 3.3 % and the coefficient 

is 0.961 for a load P = 5200 N. The proposed method does not use the variation in the displacements; instead, the 

displacements at an instant under arbitrary load are employed. Therefore, highly accurate identification is not 

expected, but identification is possible, as inferred from the results described above. 

Finally, not only the plastic parameters , 0, and n, but also the elastic modulus E are identified simultaneously. 

Only Poisson's ratio is assumed as the known value. Three virtual displacements are considered because three 

unknowns—E, , and n—are involved. The results are presented in Table 2 and Fig. 14. Low values of the elastic 

modulus are obtained, but the stress-strain curves obtained are reasonable. The errors are 2.0% and 1.7 % for loads of 

5000 N and 5200 N, respectively, and the corresponding coefficients of the determination are 0.929 and 0.916, 

respectively. Thus, it is possible to identify the plastic parameters and the elastic modulus. An attempt is made to 

identify four parameters with the Poisson's ratio as an unknown; however, converging solution for the nonlinear  

equation cannot be obtained. 

The results of this study show that the proposed method can be used to identify the elasto-plastic material 

properties from the measured displacement fields obtained at an instant. However, highly accurate identification is 

not possible at this stage. Further study is required to realize highly accurate identification. 

 

4. Conclusions 

 
We provide a technique to extract elasto-plastic material characteristics from displacement fields recorded under any given load. 

The suggested technique use instantaneous displacement fields rather than those that exhibit variation. Applying the suggested 

approach to the displacement fields of a pure aluminium specimen acquired using global digital image correlation demonstrates 

its efficiency. A single set of displacement fields under proportionate loading may identify the elasto-plastic material 

characteristics, according to the numerical validation findings. Experimental validation findings reveal that elasto-plastic 

material characteristics may be assessed; nevertheless, a disparity is seen between the directly measured stress-strain curve and 

the one that is inversely detected. The remaining differences can only be completely understood with further investigation. 

Improving the suggested technique is anticipated to allow for the identification of material qualities of elements forming real 

buildings. 
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